Orchestrators API Reference¶
This page documents the API for DeepCritical orchestrators.
IterativeResearchFlow¶
Module: src.orchestrator.research_flow
Purpose: Single-loop research with search-judge-synthesize cycles.
Methods¶
run¶
Runs iterative research flow.
Parameters: - query: Research query string - background_context: Background context (default: "") - output_length: Optional description of desired output length (default: "") - output_instructions: Optional additional instructions for report generation (default: "") <<<<<<< HEAD - message_history: Optional user conversation history in Pydantic AI ModelMessage format (default: None)
Returns: Final report string.
Note: The message_history parameter enables multi-turn conversations by providing context from previous interactions.
=======
Returns: Final report string.
origin/dev Note:
max_iterations,max_time_minutes, andtoken_budgetare constructor parameters, notrun()parameters.
DeepResearchFlow¶
Module: src.orchestrator.research_flow
Purpose: Multi-section parallel research with planning and synthesis.
Methods¶
run¶
Runs deep research flow.
Parameters: - query: Research query string <<<<<<< HEAD - message_history: Optional user conversation history in Pydantic AI ModelMessage format (default: None)
Returns: Final report string.
Note: The message_history parameter enables multi-turn conversations by providing context from previous interactions.
=======
Returns: Final report string.
origin/dev Note:
max_iterations_per_section,max_time_minutes, andtoken_budgetare constructor parameters, notrun()parameters.
GraphOrchestrator¶
Module: src.orchestrator.graph_orchestrator
Purpose: Graph-based execution using Pydantic AI agents as nodes.
Methods¶
run¶
Runs graph-based research orchestration.
Parameters: - query: Research query string <<<<<<< HEAD - message_history: Optional user conversation history in Pydantic AI ModelMessage format (default: None)
Yields: AgentEvent objects during graph execution.
Note: - research_mode and use_graph are constructor parameters, not run() parameters. - The message_history parameter enables multi-turn conversations by providing context from previous interactions. Message history is stored in GraphExecutionContext and passed to agents during execution. =======
Yields: AgentEvent objects during graph execution.
Note: research_mode and use_graph are constructor parameters, not run() parameters.
origin/dev
Orchestrator Factory¶
Module: src.orchestrator_factory
Purpose: Factory for creating orchestrators.
Functions¶
create_orchestrator¶
Creates an orchestrator instance.
Parameters: - search_handler: Search handler protocol implementation (optional, required for simple mode) - judge_handler: Judge handler protocol implementation (optional, required for simple mode) - config: Configuration object (optional) - mode: Orchestrator mode ("simple", "advanced", "magentic", "iterative", "deep", "auto", or None for auto-detect) - oauth_token: Optional OAuth token from HuggingFace login (takes priority over env vars)
Returns: Orchestrator instance.
Raises: - ValueError: If requirements not met
Modes: - "simple": Legacy orchestrator - "advanced" or "magentic": Magentic orchestrator (requires OpenAI API key) - None: Auto-detect based on API key availability
MagenticOrchestrator¶
Module: src.orchestrator_magentic
Purpose: Multi-agent coordination using Microsoft Agent Framework.
Methods¶
run¶
Runs Magentic orchestration.
Parameters: - query: Research query string
Yields: AgentEvent objects converted from Magentic events.
Note: max_rounds and max_stalls are constructor parameters, not run() parameters.
Requirements: - agent-framework-core package - OpenAI API key
See Also¶
- Architecture - Orchestrators - Architecture overview
- Graph Orchestration - Graph execution details